
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Civil Engineering Theses, Dissertations, and
Student Research Civil Engineering

7-2011

Using Laser Scanning Cytometry to Investigate the
Transport of Nano-Scale Particles in Porous Media
Ryan May
University of Nebraska – Lincoln, ryan.may@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/civilengdiss

Part of the Civil Engineering Commons, and the Environmental Engineering Commons

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been
accepted for inclusion in Civil Engineering Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

May, Ryan, "Using Laser Scanning Cytometry to Investigate the Transport of Nano-Scale Particles in Porous Media" (2011). Civil
Engineering Theses, Dissertations, and Student Research. 27.
http://digitalcommons.unl.edu/civilengdiss/27

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengineering?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss/27?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

 

USING LASER SCANNING CYTOMETRY TO INVESTIGATE THE TRANSPORT 

OF NANO-SCALE PARTICLES IN POROUS MEDIA 

 

By 

Ryan May 

 

A THESIS 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of the Requirements 

For the Degree of Master Of Science 

 

Major: Civil Engineering 

 

Under the Supervision of Professor Yusong Li 

 

Lincoln, Nebraska 

July 2011 

  



www.manaraa.com

USING LASER SCANNING CYTOMETRY TO INVESTIGATE THE TRANSPORT 

OF NANO-SCALE PARTICLES IN POROUS MEDIA 

Ryan May, M.S. 

University of Nebraska, 2011 

 

Advisor: Yusong Li 

 

The increased production of nanomaterials in recent years has been 

unprecedented. Given their potential toxicity, understanding the mechanisms controlling 

the transport of nanoparticles in the subsurface is important. In this study, a technique 

was developed for using a Laser Scanning Cytometer (LSC) to visualize and quantify the 

stable attachment of nano-scale particles. Experiments using three different size particles, 

510 nm, 210 nm and 57 nm, in conjunction with a flow cell system containing saturated 

glass beads under varied injection duration, solution chemistry, Darcy velocity and solids 

content were performed. A technique for using the LSC data to develop spatial 

distributions of attached particles was developed. The ability to provide quantifiable data 

and a spatial distribution of nanoparticle attachment at the pore-scale is unique and 

provides direct insight into the fundamental mechanisms governing nanoparticle 

transport. 

The experimental results show attachment decreases with decreasing particle size. 

The increase in injection duration for the 510 nm particles indicates a likely maximum 

retention capacity (Smax). Blocking effects are observed for the 57 nm particles in which 

attached particles block the available attachment sites and slow the rate of attachment. 
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Secondary minimum attachment plays a minor role for the attachment of both the 510 nm 

and 57 nm particles and is independent of particle size. Only about 10% of the attachment 

is attributed to secondary minimum attachment. Change of Darcy velocity has no 

profound influence on the attachment of the 57 nm particles indicating diffusion-

dominated attachment. Diffusion control is further confirmed by the spatial distributions 

of attached 57 nm particles showing attaching on downstream glass bead areas. 

Investigations of initial solids content reveal the importance of particle (aqueous) - 

particle (attached) interactions. For the 510 nm and 210 nm particles, there exists a 

critical initial solids content above which the attachment decreases with increasing initial 

solids content. This trend does not occur for the 57 nm particles which exhibit increasing 

attachment with increasing solids content due to much weaker repulsive interaction 

energy. 
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Chapter 1 

Introduction 

 

1.1 Project Overview 

The increased production and widespread application of nanomaterials in recent 

years has been unprecedented. This has inevitably led to the release of nanoparticles into 

the environment. Given their potential toxicity, understanding the fate and transport of 

nanoparticles in the natural environment is important. Little is currently known about the 

fate and transport of nanoparticles in the subsurface environment; thus, research on the 

fundamental mechanisms governing the transport of nanoparticles in the subsurface is 

necessary. The foundation of such research is investigating the physical and chemical 

factors controlling their transport at various scales. 

The common approach to investigate the fate and transport of nanoparticles in 

porous media is through column-scale experiments. In these experiments, nanoparticle 

suspensions are pumped into glass columns (typically 10 cm long and 3 cm in diameter) 

packed with glass beads or Ottawa sand for a specific time period. Typically, this is 

followed by pumping a nanoparticle-free background solution through the column. The 

nanoparticle concentration in the effluent is usually monitored to generate effluent 

breakthrough curves. Following the completion of the experiment, the column may be 

segmented and a method for measuring the average concentration of nanoparticles in 

each section may be used. Column experiments have been used to investigate the 

influences of several factors, including ionic strength, electrolyte concentration and 
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composition, flow velocity, grain surface roughness and particle sizes, on the mobility of 

engineered nanoparticles in porous media. 

The column experiments provided invaluable information on nanoparticle 

transport and mobility; however, such research has some limitations. The biggest 

limitation of column experiments is the inability to make direct observations of the 

mechanisms governing the transport of nanoparticles. Average concentrations of retained 

nanoparticles within each column section can be measured following the completion of 

the experiment, but the actual spatial distribution of the attached nanoparticles and direct 

observation of the attachment relative to collector surfaces are unattainable at the 

column-scale. Thus, only inferences can be made about the mechanisms controlling the 

transport. 

A more mechanistic approach to investigate the transport and retention of 

nanoparticles in the subsurface is through the utilization of micromodels to directly 

observe attachment at the pore-scale. This technique involves the injection of 

nanoparticle suspensions into a flow cell under a microscope operating in conjunction 

with an image capturing device. Microscope-based imagining devices may then be used 

to directly observe the transport and attachment of nanoparticles to collector surfaces. 

Some techniques may also be used to quantify and record the attachment. 

Pore-scale experiments do provide a way to directly observe and visualize the 

transport and retention of nanoparticles, but such experiments have limitations. The first 

is the resolution restriction which may preclude application to nano-scale particles. 

Widely-used visualization techniques, such as visible light imaging, magnetic resonance 

imaging and synchrotron x-ray tomography, work best at the micro-scale. A second 



www.manaraa.com

3 
 

 
 

limitation of pore-scale experiments is the capability to obtain data that is quantifiable. In 

order to achieve high resolution, most available visualization techniques are only able to 

focus on a very small area (a single pore space several microns in length). Considering 

the high uncertainty and complexity of porous media, several high resolution pictures in 

several pore spaces can typically only provide some qualitative information. Techniques 

with applications beyond just visualization are novel. Quantitative data such as the 

number of attached particles allows researchers the opportunity to mathematically model 

the results. If such pore-scale models are validated, insight into the fundamental 

mechanisms governing nanoparticle transport may be revealed. 

One pore-scale experimental technique involves using Laser Scanning Cytometry. 

Laser Scanning Cytometry uses laser-based opto-electronics and automated analysis 

capabilities to visualize, quantify and record fluorescent matter. The Laser Scanning 

Cytometer (LSC) is a micro-scope based instrument that incorporates fluorescent 

microscopy, image analysis and flow cytometry technologies. The advantages of using 

the LSC is the ability to observe a large scan area (up to several centimeters), quantifiable 

data is obtained, a spatial distribution of particles is generated and the pore-scale provides 

direct insight on the mechanisms governing transport. It is reasonable to assume this 

technique will allow researchers the ability to work with nanoparticles smaller than 100 

nm and obtained quantitative information on their attachment and distribution in porous 

media. An LSC-based technique such as this has not been used before. This study 

represents the first use of Laser Scanning Cytometry to investigate nanoparticle transport 

and retention. 
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1.2 Project Goals and Objectives 

The main purpose of this study is to explore the feasibility of using an LSC to 

investigate the transport of nano-scale particles in porous media. This study is oriented by 

two specific goals: 

1. Develop an LSC-based technique to visualize and quantify the 

transport of nano-scale particles in a flow cell system. 

2. Use the developed technique to investigate the mechanisms controlling 

the transport and retention of particles of different sizes in glass bead 

porous media under varied injection duration, solution chemistry, 

Darcy velocity and solids content.  
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Chapter 2 

Literature Review 

 

2.1 Introduction 

In this chapter, literature on the production and environmental impact of 

nanoparticles, the fundamental mechanisms governing nanoparticle transport in the 

subsurface, previous experiments and Laser Scanning Cytometry is discussed. 

 

2.2 Engineered Nanomaterials 

2.2.1 Engineered nanomaterial production 

Engineered nanomaterials are referred to as manufactured materials that have at 

least one dimension less than 100 nm. The EPA Nanotechnology White Paper further 

defines nanotechnology as, “…research and technology development at the atomic, 

molecular, or macromolecular levels using a length scale of approximately one to one 

hundred nanometers in any dimension; the creation and use of structures, devices and 

systems that have novel properties and functions because of their small size; and the 

ability to control or manipulate matter on an atomic scale.” Figure 2.1 illustrates the scale 

of several nano-scale objects [1]. 
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manufacturer-identified nanotechnology-enabled consumer products have been 

introduced in the marketplace [3]. 

 

2.2.2 Environmental impact of nanoparticles 

Because the environment is exposed to intentionally produced nanomaterials, it is 

important for research to investigate likely exposure pathways. Environmental fate of 

nanomaterials includes fate in air, soil and water. Given the various uses of 

nanomaterials, it is clear there are several pathways for nanomaterials to enter the 

environment besides direct application. A few examples of how engineered 

nanomaterials may enter the subsurface environment are industrial releases, directly 

leaching from landfills, wastewater reuse, biosolids containing engineered nanomaterials 

used in agriculture and recharge of groundwater from a water source containing 

engineered nanomaterials. Figure 2.2 depicts several of these exposure pathways. It has 

been shown that silver nanoparticles, currently the most commonly used engineered 

nanomaterials in consumer products [4], can be released from cloth, toothpaste, shampoo, 

detergent, towel and toys during washing processes [5, 6, 7]. Direct evidence [8] has 

shown that synthetic TiO2 nanoparticles from urban applications are released in 

significant amounts to the aquatic environment. 
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tons by 2015 [12]. TiO2 has been reported to cause oxidative stress in microglial cells 

[13], inflammation in rats and mice [14], cytotoxicity and genomic instability towards 

cultured WIL2-NS human lymphoblastoid cells [15] and DNA damage to goldfish skin 

cells, GFSk-S1 [16]. It has also been reported that a typical water treatment process, 

coagulation followed by sedimentation at an alum dosage of 60 mg/L, removed less than 

40% of the influent TiO2 nanomaterials, which are widely used in sunscreen [17]. 

Clearly, with wide-spread production and inevitable exposure of nanoparticles to 

the environment, specifically the subsurface, it is important that extensive research on 

nanoparticles be performed to investigate potential exposure pathways, fate and transport, 

environmental impacts and risk assessment. The focus of this study falls into the fate and 

transport aspect of nanoparticle research focusing on the influence of several 

environmental conditions and nanoparticle properties on particle attachment at the pore-

scale. 

 

2.3 Understanding Fate and Transport of Nanoparticles 

2.3.1 Theories for nanoparticle transport and retention 

Particle transport is influenced by many physical and chemical processes. The 

mechanisms contributing to the fate and transport of particles in the subsurface are 

advection, dispersion, physicochemical filtration, straining, inactivation and dilution. 

Advection is the movement of the nanoparticles along the fluid flow paths within the 

porous media. The process of advection leads to dispersion of the particles due to 

tortuosity and non-homogeneity of the fluid flow paths. Physical mechanisms also play a 

significant role in the transport of particles. The physical mechanisms influencing the 
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available surface area decreases resulting in decreased katt. As katt approaches zero, the 

solid-phase concentration of nC60 aggregates approaches Smax. This modified model 

suggests α will actually decrease with time. Li at al. [21] were able to much more 

accurately simulate the nC60 breakthrough curves and retention profiles using the 

modified model. 

 

2.3.2 Column-scale studies 

 The traditional laboratory method for investigating the fate and transport of 

nanoparticles in porous media is column experiments. In these experiments, nanoparticle 

suspensions are pumped into glass columns (typically 10 cm long and 3 cm in diameter) 

packed with glass beads or Ottawa sand for a specific time period. This is typically 

followed by pumping a background solution free of nanoparticles, often called a rinse. 

Nanoparticle concentration in the effluent is generally monitored to generate effluent 

breakthrough curves. Following the completion of the experiment, the column may be 

segmented and some average concentration for each section may be measured. Column 

experiments have been used to investigate the influences of different factors, such as 

ionic strength, electrolyte concentration and composition, flow velocity, grain surface 

roughness and particle sizes, on the mobility of engineered nanoparticles in porous 

media. In the following paragraph, a brief summary of some representative studies is 

provided. 

Ionic strength has been investigated to determine its influence on particle 

attachment. As ionic strength increases, α has been found to increase resulting in an 

increase in attachment as a result of a decrease in electrostatic repulsion between particles 
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[22]. Several studies have shown that as ionic strength increases, α increases resulting in 

an increase in attachment [23, 24, 25]. This decrease in electrostatic repulsion between 

particles results in increased particle aggregation which in turn leads to greater 

attachment. Espinasse et al. [22] found that the theoretical limit for α was reached at the 

highest experimental ionic strength. Hyung and Kim [23] studied the effect of NOM 

adsorption to multi-walled nanotubes (MWNTs) and found that the adsorption capacity 

was affected by ionic strength as well as pH. Adsorption capacity increased as ionic 

strength increased and adsorption capacity decreased as pH increased. Jaisi and 

Elimelech [24] studied the transport of single-walled nanotubes (SWNTs) in soil columns 

and found that SWNT attachment increased due to physical straining with increasing 

ionic strength. 

Electrolyte concentration and composition is another chemical factor influencing 

particle attachment in the subsurface. Increasing multivalent cation concentration has 

been found to increase the retention of fullerene aggregates on glass bead surfaces [22]. 

Jaisi and Elimelech [24] found that SWNT attachment in soil columns increased due to 

physical straining with the addition of cations. They also found that divalent cations 

(Ca2+) are more effective than monovalent cations. 

Flow velocity is a physical factor that has been found to influence the retention of 

nanoparticles in porous media. Physical factors tend to influence the collector efficiency, 

or the rate at which particles strike the collector per the rate at which particles flow 

toward the collector. Diffusion will be the dominant retention mechanism. At higher flow 

velocities, less diffusion occurs resulting in lower η0. Consistent with the theory, 
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experimentally estimated α values have been found to be independent of flow rate [22]. 

Thus, higher flow velocities have been shown to result in less retention [22, 21, 25]. 

Micro-scale surface heterogeneity such as surface roughness of porous media may 

also impact particle attachment. For example, Li et al. [21] found the Smax of nC60 is 

influenced by pore-scale hydrodynamics, which would certainly be impacted by sand 

surface roughness which could alter streamlines around the sand grain and increase nC60 

retention. Also, increased grain size resulting in greater porosity has been found to 

decrease retention [21, 22]. Varying transport and retention characteristics have been 

reported for nC60 transport depending on whether glass beads, quartz sands, or natural 

soils represent the porous medium. Wang at al. [27] found the retention of nC60 in 

columns packed with glass beads is significantly smaller than with quartz sands and 

natural soils. More recently, Li et al. [21] found that the retention capacity of nC60 on 

natural soils could be 10 times higher than on Ottawa sand. 

 The effect of particle size on the attachment of nano- and micro-scale latex 

particles in porous media has been studied [28]. Particles having diameters of 50 nm, 110 

nm and 1500 nm were used. The results showed the smallest of the three particle 

diameters exhibited the least retention over the range of ionic strengths used. The two 

larger particle diameters showed much higher retention on the sand surface. It was shown 

that the attachment efficiencies for the particles with a diameter of 500 nm were 

significantly greater than those of the smaller particles at low ionic strengths. This is not 

in agreement with expectation. One explanation may be the larger diameter particles are 

able to deposit in the secondary minimum. 
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 While column-scale studies have provided invaluable information on nanoparticle 

transport and mobility, such an approach has some limitations. The most important 

limitation of column experiments is the inability to make direct observations of the 

mechanisms governing the transport of nanoparticles. A researcher may be able to 

measure the average concentration of retained nanoparticles within an individual section 

of the column at the end of the experiment, but the physical distribution of the attached 

nanoparticles within the segment and direct observation of the attachment relative to 

collector surfaces are not possible. Thus, it is difficult to clearly elucidate which 

mechanisms are controlling the transport. 

 

2.3.3 Pore-scale studies 

 Traditionally, research investigating the transport of nanoparticles in the 

subsurface has been performed using column-scale studies. The limitation with using a 

column-scale approach is that inferences must be made about the mechanisms controlling 

the transport based on the average concentration of the effluent. A more mechanistic 

approach to investigate the transport of nanoparticles in the subsurface is through the 

utilization of micromodels to directly observe particle attachment at the pore-scale. 

One micromodel study [19] used monodisperse suspensions of spherical 

polystyrene latex particles with a mean diameter between 3 and 7 μm in micromodels to 

investigate the importance of different processes involved in the removal of colloids in 

porous media under saturated conditions. The study examined the effect of particle size, 

grain surface roughness, solution ionic strength and flow rate on colloid attachment. The 

colloids had a sulfate (SO4
-) surface functionalization and a negatively charged surface. 
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strengths. At moderate ionic strengths (10-30 mM) achieved using monovalent salt, 

particle attachment was found to occur in the secondary minimum and accumulation near 

the rear of the collectors was observed. An ionic strength of 100 mM resulted in 

attachment over the entire collector surface. This is attributed to no calculated 

electrostatic energy barrier existing at this high ionic strength. The authors concluded that 

attachment of micron-scale particles in the secondary energy minimum is an important 

removal mechanism. 

 Surface potential has also been shown to influence aggregation and transport of 

nanoparticles [30]. The study investigated the effect of surface potential on Titania 

particle aggregation and transport in Pyrex wafer micromodels by adjusting the pH. The 

results indicated that pH, and therefore surface potential, greatly influenced aggregation, 

particle-particle interactions and particle-collector interactions. 

While pore-scale experiments provide means to directly observe and visualize the 

transport and retention of particles, there are several limitations. The first is the resolution 

restriction, which may preclude its application to nano-scale particles. Visualization 

techniques currently used in pore-scale experiments include visible light, magnetic 

resonance and X-rays. The corresponding resolution limits for each one are presented in 

Table 2.1. Clearly, none of these techniques is able to identify particles smaller than 100 

nm. A second limitation of pore-scale experiments is the capability to obtain quantitative 

information in addition to visualization results. Only if quantitative information, such as 

the number of particles attached, is obtainable from pore-scale experiments, can rigorous 

modeling and prediction be implemented and validated at the pore-scale to reveal the 

mechanisms governing nanoparticle attachment and retention. 
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Table 2.1 Visualization techniques and corresponding resolution limits 
Technique Resolution Limit 

Visible light imagining 20 μm 
Visible light imagining (microscopy) 0.2 μm 

Magnetic resonance imagining 10 μm 
Synchrotron X-ray tomography 3 μm 

γ-ray tomography mm 
Positron emission tomography ? 

 

2.4 Laser Scanning Cytometry 

 Laser Scanning Cytometry uses laser-based opto-electronics and automated 

analysis capabilities to visualize, quantify and record fluorescent matter. The LSC is a 

micro-scope based instrument that incorporates fluorescent microscopy, image analysis 

and flow cytometry technologies. The advantages of using an LSC are the ability to 

observe a large scan area (up to several centimeters), quantifiable data is obtainable, a 

spatial distribution of particles is generated and investigation at the pore-scale provides 

direct insight on the mechanisms governing transport. 

 The LSC measures laser excited fluorescence at several wavelengths from 

fluorescently dyed matter on standard microscope slides. The LSC has two lasers, a 20 

mW argon ion laser and a 5 mW red HeNe laser, and each provides a single wavelength 

to excite fluorescently dyed samples. The fluorescent light given off by the dyed samples 

is collected and transmitted to up to four photomultiplier tube (PMT) detectors. Each 

PMT detector measures a different range of wavelengths. 

A schematic of the major components within the LSC is provided in Figure 2.7. 

The following technical description of the process by which the LSC operates was 

published by Kamentsky et al. [31]: 
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Laser Scanning Cytometry has several advantages. Multiple channels of 

information are simultaneously visualized and analyzed. The LSC allows users to 

automatically segment samples of interest. Further, the LSC has the capability to segment 

on the sub-cellular level. Several application types are capable of implementation using 

LSC technology. According to CompuCyte [33], fluorescent molecules in solution, 

nuclear analysis, cytoplasmic analysis, cellular analysis and colony analysis are just a few 

of the typical applications of LSC-based studies. 

 Based on these features of the LSC, it is reasonable to hypothesize that utilizing it 

will allow for (1) identification of nanoparticles with sizes less than 100 nm and (2) 

obtaining of quantitative information on nanoparticle attachment and distribution in 

porous media. At this point in time, an LSC has not been used to investigate fate and 

transport of nanoparticles in porous media. This study represents the first LSC-based 

approach for investigating the transport and retention of nanoparticles. 

  



www.manaraa.com

22 
 

 
 

Chapter 3 

Experimental Equipment Design 

 

3.1 Introduction 

 One of the major objectives of this study is to design a procedure for using Laser 

Scanning Cytometry to visualize, quantify and record the transport of nanoparticles in 

saturated glass bead porous media. Fluorescent particles and a flow cell system need to 

be appropriately selected and designed in order to allow for the observation of the 

transport of nanoparticles using fluorescent microscopy equipped with an LSC. This 

chapter details the selection and characterization of the particles and the design of the 

flow cell system. 

Fluorescent particle selection was dependent on the characteristics of the LSC. 

More specifically, the excitation wavelength of the laser and the emission wavelengths of 

the PMT detectors governed the selection of the fluorescent particles. Fluorescent 

particles with an excitation spectrum peak near the wavelength provided by the laser and 

an emission spectrum peak within the wavelengths covered by one of the available PMT 

detectors were selected based on manufacturer supplied excitation and emission spectra. 

In order to verify the compatibility of the fluorescent particles with the LSC, exploratory 

LSC scans were performed during the particle selection process. Also, a procedure for 

preparing particle suspensions was developed. 

Characterizations of the particle suspensions were performed through particle size 

distribution and zeta potential measurements. Particle size distribution measurements 

allowed for determining if aggregation was occurring as well as verifying the diameters 
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of the particles. Zeta potential values further indicated the stability of the particle 

suspensions at various ionic strengths. 

 Selection of the flow system components, including glass beads, a flow cell, a 

syringe pump, syringes, tubing and fittings, required compatibility with flow applications 

as well as optical and fluorescent microscopy. Glass beads have been widely used as 

model porous media in many experiments. In this study, another reason to select glass 

beads is their optical properties are compatible with fluorescent microscopy. Flow cell 

selection also depended on the dimensions of the LSC microscope stage. The size of the 

flow cell was restricted by the space available on the microscope stage and the vertical 

clearance between the stage and the optic. Syringes, a syringe pump, tubing and fittings 

were purchased after the selection of the flow cell. Procedures for preparing glass beads 

and packing flow cells with a single layer of glass beads were developed. 

 

3.2 Fluorescent Particles 

3.2.1 Introduction 

The particles used in this study are Fluorophorex™ Fluorescent Nanospheres 

(Phosphorex, Inc., Fall River, MA). They are uniform spheres made from polystyrene 

with a carboxyl surface functionalization. The fluorescence used to dye the particles is 

green with an excitation maximum at 480 nm and an emission maximum at 520 nm. The 

stock solution contains 0.1% Tween 20 in DI water and the antimicrobial agent is 2 mM 

NaN3. The density of the particles is 1.06 g/cm3 and the surface charge value provided by 

the manufacturer is 0.165 meq/g. 
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stock solution required for each dilution. The particle suspensions were prepared in a 

volumetric flask and diluted with DI water. Sodium bicarbonate (NaHCO3) titrations 

using 0.1 M NaHCO3 were performed to obtain a pH of 6.95±0.1 for each particle 

suspension. In cases when the pH was raised above the desired range, 10 mM HCl 

titrations were performed. Sodium chloride (NaCl) was used to obtain the ionic strength 

of each particle suspension. The ionic strengths used were 0 mM, 3 mM NaCl and 100 

mM NaCl. The standard ionic strength, 3 mM NaCl, was used unless the specific 

experiment was investigating the influence of solution chemistry. 

 

3.2.3 Procedure for particle size distribution measurements 

 Particle size distributions were measured using a 90Plus Particle Size Analyzer 

(Brookhaven Instruments Corporation, Holtsville, NY). The basis of the 90Plus Particle 

Size Analyzer is Dynamic Light Scattering (DLS) principles. In general, the analyzer can 

measure particles sizes ranging from 2 nm to 3000 nm. Photon Correlation Spectroscopy 

(PCS) of Quasi-Elastically Scatter Light (QLES) is the foundation of the analysis in 

which fluctuations about average, scattered, laser light intensity is correlated. The 

analysis typically requires a few minutes, has a relative error of ±1% and requires 

approximately 2 mL of sample. 

 The instrument is controlled by a computer and the governing software is user-

friendly requiring the input of just a few simple parameters. Dust poses the biggest 

interference to the measurements, but the built-in dust filter is simple to manipulate in 

order to correct the interference. The result is a lognormal size distribution from which 

mean and standard deviation are calculated by weight. An effective diameter is measured 
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3.2.4 Procedure for zeta potential measurements 

 Zeta potential measurements were performed using a ZetaPALS Zeta Potential 

Analyzer (Brookhaven Instruments Corporation, Holtsville, NY) which utilizes Phase 

Analysis Light Scattering (PALS), an extension of electrophoretic light scattering (ELS), 

to measure electrophoretic mobility (EPM) and thus calculate zeta potential. PALS is a 

more sensitive technique than ELS and is useful when measuring low EPM which can 

arise in particle suspensions for various reasons. One such reason is a medium of low 

dielectric constant or high viscosity. A second case is that in which high salt molarity 

leads to strong electrostatic shielding of particles in a highly conductive medium and 

limits the electric field which may be applied. Another case is a low mobility due to a low 

zeta potential. It has been shown that PALS is capable of measuring velocities 1000 times 

smaller than ELS. 

 The ZetaPALS Zeta Potential Analyzer requires the use of an electrode and 

preparation of a good particle suspension at an appropriate concentration. Keeping the 

cuvette and electrode clean is important due to the sensitivity of the instrument. The 

software is simple and requires the user to input just a few simple parameters. The main 

concern of the user is keeping the electrode clean and preventing contamination of the 

sample. 
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3.3 Flow System Design 

3.3.1 Glass beads 

Spherical glass beads (Potters Industries, Inc., Valley Forge, PA) were selected as 

model porous media in this study. The glass beads have a density of 2.5 g/cm3, a Knoop 

hardness of 515, an average compressive strength of 36,000 psi and a free silica content 

of 0%. The Potters designation for the glass beads is #3 and corresponds to a 20-30 U.S. 

sieve size resulting in a maximum diameter of 850 μm and a minimum diameter of 600 

μm. The minimum percent of round particles provided by the manufacturer is 65%. The 

#3 glass beads were sieved using a size 25 U.S. sieve corresponding to 710 μm. The 

resulting range of diameters for the glass beads is from 600 μm to710 μm. 

Prior to use, the glass beads were washed with pure acetone solution followed by 

pure hexane solution. The glass beads were then soaked in concentrated (12.1 M) 

hydrochloric acid (HCl) for 12 hours and then rinsed several times with DI water to 

remove residual HCl. Next, the glass beads were placed in a series of 20 minute 

ultrasonic baths using an FS60 Ultrasonic Cleaner (Fisher Scientific, Pittsburgh, PA) at 

room temperature containing 0.01 M sodium hydroxide (NaOH), DI water and 1.0 M 

nitric acid (HNO3). The glass beds were then again rinsed with DI water until pH 7 was 

reached followed by oven-drying at 125 °C for 12 hours. 

 

3.3.2 Flow cell 

 The flow cell chosen for this study was an ibidi μ-Slide I0.8 Luer (ibidi LLC, 

Verona, WI) consisting of an uncoated hydrophobic plastic designed for high resolution 

microscope analysis. The optical quality of the material is comparable to glass and 
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3.3.5 Procedure for flow cell packing 

 The first step in flow cell preparation was to weigh and record the mass of the 

empty flow cell. Next, the flow cell was packed with glass beads prepared according to 

the procedure presented in Section 3.3.1. Because the height of the flow channel is 0.8 

mm, the glass beads selected had a range of diameters from 0.6 mm to 0.71 mm, 

corresponding to the first two standard U.S. sieve sizes of less than 0.8 mm. Using glass 

beads slightly less than the flow channel height allowed for a uniform single-layer of 

glass beads packing to be achieved. 

 The technique employed for flow cell packing required a funnel created from 

filter paper. The flow cell was held at an angle with the inlet higher than the outlet and 

the funnel was used to direct glass beads into the inlet of the flow channel. In instances 

when the glass beads resisted sliding through the channel, a pair of tweezers was used to 

tap the sides of the cell so as to shake the glass beds through the channel until they 

reached the end. It was difficult to pack the flow cell without having some excess glass 

beads accumulate within the inlet and outlet; therefore, tweezers were again used to tap 

the bottom of the flow cell under the inlet and outlet to pop some of the excess glass 

beads out until the glass bed level was equal to the channel height. The weight of the 

packed flow cell was then measured and recorded. 

 The porosity of the flow cell was measured in order to calculate the volume of 

solution corresponding to a pore volume (PV) for each experiment. The manufacturer 

reported the density of the glass beads as 2.5 g/cm3. The mass of the glass beds was 

measured by subtracting the weight of the empty flow cell from that of the packed flow 

cell. The porosity was found by subtracting the volume of glass beads, determined from 
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calculations using the glass bead mass and density, from the volume of the flow channel, 

reported as 0.2 mL by the manufacturer.  

Another approach to estimate porosity is to calculate the volume of water in the 

pore spaces based on the measured mass and reported density of the water. The estimated 

porosity values using the two methods are comparable to each other. Measuring the 

porosity using water before each experiment was difficult because the flow cell must be 

removed from the flow system setup and then reattached without leaving any air bubbles 

in the system. This proved to be difficult. Thus, the approach based on glass bead volume 

was used in this study to estimate the porosity of packed flow cell. 

  



www.manaraa.com

35 
 

 
 

Chapter 4 

Experimental Methods  

 

4.1 Introduction 

In this study, an LSC was used to scan and thus identify the spatial distribution of 

particles that were stably attached in glass beads packed in a flow cell. The compatibility 

between the fluorescently dyed particles and the LSC system was initially verified by 

scanning fluorescent particle suspensions directly on standard microscope slides. The 

laser and PMT detector selection depended on the excitation and emission spectra of the 

fluorescent particles. The LSC parameters were adjusted separately for each size of 

particle. Next, suspensions were introduced into unpacked flow cells and scanned to 

determine the starting points for the LSC parameters for use during the flow cell 

experiments. The final step was to perform LSC scans using packed flow cells to fine-

tune the LSC parameters and verify successful operation. 

A series of experiments were performed to measure the effects of injection 

duration, solution chemistry, Darcy velocity and solids content on the retention of 

nanoparticles in porous media. The scan area used throughout the study was limited to 

the middle 12.5 mm of the length of the flow channel due to vertical clearance 

restrictions between the inlet and outlet of the flow cell and the microscope objective. 

The scan area, however, is consistent between each experiment. The standard for each 

experiment was 0.0025% solids content, 3 mM NaCl ionic strength and 0.04 cm/s Darcy 

velocity. Each experiment began with a 40 PV injection of particle suspension into the 

flow cell, which was already completely saturated with background solution. Next, 5 PV 
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of background solution was injected. Such a procedure resulted in only stably attached 

particles remaining in the flow cell prior to the LSC scan. Flow cell experiments for each 

size of particle were conducted individually. In most cases, duplicates of each experiment 

were performed. 

The Darcy velocities used were 0.08 cm/s, 0.06 cm/s, 0.04 cm/s and 0.02 cm/s. 

Solids contents of 0.005%, 0.0025% and 0.0005% were used and ionic strengths up to 

100 mM NaCl were selected. Most of the flow cell experiments had injection durations of 

40 PV; however, additional experiments using injection durations of 120 PV, 240 PV and 

300 PV were performed to determine the presence of a maximum capacity for 

attachment. Another set of flow cell experiments was performed in which a rinse with 

corresponding background solution and a subsequent LSC scan was followed by a rinse 

with DI water and a second LSC scan to analyze the influence of solution chemistry and 

attachment in the secondary minimum. 
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The process by which the LSC operates is shown in Figure 4.3 below. The 

software records several properties of each event, in addition to area and integral, 

including maximum pixel, time, x-position, y-position, perimeter and more. This data can 

be used to quantify the results as well as provide a spatial distribution of the data. 

 
Figure 4.3 Process by which the Laser Scanning Cytometer operates 

 

4.2.2 Microscope unit 

 The microscope is a standard Olympus BX-50 with a motorized stage as shown in 

Figure 4.4. It is equipped with an objective turret. The objectives available are 10X, 20X 

and 40X with nominal beam or spot sizes of 10 μm, 5 μm and 2.5 μm, respectively. A 

slider control allows the user to switch from the brightfield, used when focusing the 

microscope, to the laser beam used during scanning. Because the flow cell is thicker than 

a standard microscope slide, the 40X objective cannot be used due to vertical clearance 

A laser is used to illuminate particles on a slide.

Light resulting from laser excitation of particles is detected by a photo 
sensor and is converted into electronic signals.

The analog signals are converted to a set of digital values in computer 
memory.

Each of the digital values is called a pixel defined as the smallest unit 
on the display screen that can be stored, displayed or addressed.

The sets of pixels for each event are segmented.

By using the pixel information grouped for each event, some of the 
properties, such as area and integral, are determined.
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Following a background solution rinse, particle suspension will be injected. 

Injection velocities used are 0.08 cm/s, 0.06 cm/s, 0.04 cm/s and 0.02 cm/s. The standard 

velocity is 0.04 cm/s and the other velocities are used to analyze the influence of Darcy 

velocity on stable attachment. 

The introduction of the particle suspension requires the syringe containing the 

background solution to be switched with the syringe containing the particle suspension. It 

is important to position the three-way valve so as to prevent backflow from the flow 

channel when switching syringes. Once the syringe containing the particle suspension is 

attached, a volume of solution is pumped in order to fill the tube between the syringe and 

the three-way valve insuring no air bubbles are present. 

The standard injected PV of particle suspension used for this study is 40 PV. 

Larger PVs are used during experiments analyzing the influence of injection duration. A 

40 PV standard was selected based on previous pore-scale experiments [29] with 

consideration for the time it takes to conduct an experiment at the minimum velocity. 

Because the tubing between the syringe and the three-way valve has been filled with 

particle suspension, only 40 PV is pumped after switching the valve to allow fluid to flow 

towards the flow cell. The three-way valve again needs to be positioned to prevent 

backflow from the flow cell after the 40 PV is complete. At this point, a portion of the 40 

PV of particle suspension is located in the tubing between the three-way valve and the 

flow cell. 

Following injection of 40 PV of particle suspension, 10 PV of background 

solution will be introduced into the flow cell. The purpose of the background solution 

rinse is to flush unattached particles from the flow channel, so that stably attached 
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particles can be investigated. The same technique as before is required to fill the tubing 

between the syringe and the three-way valve, being careful to avoid air bubbles in the 

flow system. Because the tubing after the three-way valve is still filled with a portion of 

the particle suspension, the background solution rinse requires 10 PV in addition to the 

volume of solution between the valve and the flow cell. Once the rinse is complete, the 

three-way valve is again closed in order to prevent backflow from the flow channel 

during the LSC scan. 

 

4.3.3 Procedure for Laser Scanning Cytometer scans 

 The first step in performing an LSC scan is focusing the microscope. The LSC is 

only able to record the particles attached within its depth of field. Using a 20x 

magnification, the depth of field is 5.8 μm, while the depth of flow cell is 0.8 mm. Thus, 

the LSC can only detect a portion of the particles attached onto glass bead surfaces. For 

this study, the microscope is slowly brought into focus until the top of the glass beads just 

come into focus. Although only a portion of the attached particles are detectable, the 

scanning results are comparable between each experiment because the scan area and the 

focusing location are consistent. 

 The second step of an LSC scan is to define the scan area. As discussed 

previously, the scan area covers the middle 12.5 mm of the flow channel. The start x-

position is 31,500 and the end x-position is 44,000. The start y-position is 10,250 and the 

end y-position is 15,250. Once the user has inputted these vales to manually define the 

scan area, the protocol can be saved and used for all future scans. 
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 Following the definition of the scan area, the parameters for the scan are set. This 

study used the 20 mW argon ion laser and the D: 530/30 (FITC, Green Fluorescent 

Protein) optical filter tube selected based on excitation and emission spectra of the green 

fluorescence used to dye the particles, as detailed in Section 4.2.3 and Section 4.2.4. The 

two main parameters that must be considered are the PMT (%) and offset gain. This is 

first done through an iterative process. The PMT (%) should be adjusted so the color bars 

are in the upper third of the scale. Ideally, the signal should be as high as possible while 

minimizing the number of saturated pixels. The offset should be adjusted so as to achieve 

a small gap between the zero point and the beginning of the color bars. 

The parameters used in this study are shown in Table 4.1. These values are 

reported as a reference for future studies and are not necessarily the values that should be 

used. As the fluorescence ages or new batch suspensions are purchased, the values for 

these parameters may need adjustment. An iterative approach is the only method to 

optimize these values. After the scan area is set, the laser and optical filter tube are 

selected and the parameters are inputted, the scan is ready to proceed. The entire scan 

takes approximately 20 minutes for the scan area and magnification used in this study. 

Following the completion of the scan, the cell file can be saved and the data can be 

exported as a text file to be analyzed using other software. 

Table 4.1 Typcal Laser Scanning Cytometer software parameters for flow cell 
experiemnts 

Diameter PMT (%) Offset Gain 
510 nm 25 1900 
210 nm 25 1900 
57 nm 40 1950 
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Chapter 5 

Results and Analysis 

 

5.1 Overview 

 In this chapter, experimental results are presented and analyzed. Particle 

characterization results, including particle size distribution and zeta potential 

measurements, and flow cell experiment results will be covered. The particle size 

distribution results will be presented in tables as well as graphically in the form of 

differential distributions and cumulative undersize distributions. Zeta potential 

measurements will be presented in tabular and graphical form as a function of zeta 

potential (mV) versus ionic strength (mM NaCl). The results of 25 flow cell experiments 

(with duplicates) will be presented using graphs, histograms and spatial distribution 

figures. An experimental matrix is presented in Table 5.1. Flow cell experiments were 

conducted to investigate the transport and retention of three different size particles, 510 

nm, 210 nm and 57 nm. In these experiments, several parameters including injection 

duration, solution chemistry, Darcy velocity and solids content were varied. 
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Table 5.1 Experimental matrix for flow cell experiments 
Exp. Dia. (nm) Solids Cont. (%) mM NaCl Darcy Vel. (cm/s) Inj. Duration (PV) 
001 510 0.0025 3 0.08 40 
002 510 0.0025 3 0.06 40 
003 510 0.0025 3 0.04 40 
004 510 0.0025 3 0.02 40 
005 510 0.005 3 0.04 40 
006 510 0.0005 3 0.04 40 
011 210 0.0025 3 0.08 40 
012 210 0.0025 3 0.06 40 
013 210 0.0025 3 0.04 40 
014 210 0.0025 3 0.02 40 
015 210 0.005 3 0.04 40 
016 210 0.0005 3 0.04 40 
021 57 0.0025 3 0.08 40 
022 57 0.0025 3 0.06 40 
023 57 0.0025 3 0.04 40 
024 57 0.0025 3 0.02 40 
025 57 0.005 3 0.04 40 
026 57 0.0005 3 0.04 40 
031 510 0.0025 3 0.08 120 
032 57 0.0025 3 0.08 120 
033 510 0.0025 3 0.04 120 
034 57 0.0025 100 0.04 40 
035 57 0.0025 3 0.08 300 
036 510 0.0025 3 0.04 240 
037 510 0.0025 100 0.04 40 

 

5.2 Particle Characterization 

5.2.1 Particle size distributions 

 Particle size distributions were measured in order to confirm the particle 

diameters reported by the manufacturer as well as to monitor the effect of solution 

chemistry on particle aggregation. Particle suspensions were shipped in 1 mL bottles 

labeled with a diameter for the contained particles in suspension; however, a product data 

sheet was also provided by the manufacturer which reported a mean diameter different 
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from that of the bottle. The mean diameter reported on the product data sheet was 

confirmed to be the official manufacturer value. 

 The measurement parameters were consistent for each of the particle size 

distribution experiments performed. The only parameter that varied was the dust cutoff, 

an algorithm that rejects data corrupted by scattering due to dust, in order to obtain 90-

98% data retention. For the 510 nm particles, the dust cutoff used was 40.00 and for the 

210 nm and 57 nm particles, it was 20.00. 

The first particle size distribution experiment that will be presented is for the 510 

nm particles. The suspension used for this experiment was 0.0025% solids in DI water. 

Table 5.2 gives the measurement parameters for this experiment and the measurement 

results are presented in Table 5.3. The mean effective diameter for this experiment is 

518.6 nm, a 1.69% difference from the diameter provided on the product data sheet. The 

mean polydispersivity, a measure of the non-uniformities existing in the distribution, is 

0.004. The experiment has a mean baseline index of 9.1 and mean data retention of 

99.00%. 

  



www.manaraa.com

55 
 

 
 

Table 5.2 Measurement parameters for 510 nm particle size distribution measurement 
Parameter Value 
Temperature 25.0 
Suspension Water 
Viscosity 0.890 cp 
Ref. Index Fluid 1.330 
Angle 90.00 
Wavelength 658.0 nm 
Dust Cutoff 40.00 
Runs Completed 3 
Run Duration 3 minutes 
Total Elapsed Time 9 minutes 
Average Count Rate 342.0 kcps 
Ref. Index Real 1.590 
Ref. Index Imaginary 0.000 

Table 5.3 Measurement results for 510 nm particle size distribution experiment 
Run Eff. Dia. (nm) Half Width (nm) Polydispersivity Baseline Index 

1 525.4 16.6 0.001 8.4 / 100.00% 
2 512.1 36.2 0.005 9.2 / 98.50% 
3 518.4 36.7 0.005 9.8 / 98.50% 

Mean 518.6 29.8 0.004 9.1 / 99.00% 
Std. Error 3.8 6.6 0.001 0.4 / 0.50% 
Combined 518.7 36.7 0.005 9.2 / 99.00% 
 

The lognormal size distribution results for the 510 nm particle size distribution 

measurement are presented in Figure 5.1 and Figure 5.2. Figure 5.1 shows the cumulative 

undersize distribution, the percent of the size distribution at or below the diameter. Figure 

5.2 shows the differential size distribution; a unimodal distribution confirming the narrow 

distribution of particle sizes. 
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Figure 5.1 Cumulative undersize distribution for 510 nm particle suspension 

 
Figure 5.2 Differential distribution for 510 nm particle suspension 

The particle size distribution experiment for the 210 nm particles was performed 

similarly. The suspension used for the experiment was 0.0025% solids in DI water. 
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measurement results are given in Table 5.5. The mean effective diameter measured is 

201.3 nm, a 4.14% difference from the diameter provided on the product data sheet. The 

mean polydispersivity is 0.018 and the mean baseline index and data retention is 9.3 and 

92.95%, respectively. 

Table 5.4 Measurement parameters for 210 nm particle size distribution measurement 
Parameter Value 
Temperature 30.0 
Suspension Water 
Viscosity 0.798 cp 
Ref. Index Fluid 1.330 
Angle 90.00 
Wavelength 658.0 nm 
Dust Cutoff 20.00 
Runs Completed 3 
Run Duration 3 minutes 
Total Elapsed Time 9 minutes 
Average Count Rate 478.4 kcps 
Ref. Index Real 1.590 
Ref. Index Imaginary 0.000 

Table 5.5 Measurement results for 210 nm particle size distribution measurement 
Run Eff. Dia. (nm) Half Width (nm) Polydispersivity Baseline Index 

1 204.2 17.6 0.007 10.0 / 94.78% 
2 200.6 40.3 0.040 8.1 / 90.46% 
3 199.0 14.1 0.005 9.7 / 93.59% 

Mean 201.3 24.0 0.018 9.3 / 92.95% 
Std. Error 1.5 8.2 0.011 0.6 / 1.29 
Combined 201.3 17.5 0.008 9.4 / 92.95% 
 

The lognormal size distribution results of the 210 nm particle size distribution 

experiment are presented in the following figures. Figure 5.3 shows the cumulative 

undersize distribution. The differential size distribution is presented in Figure 5.4. 
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Figure 5.3 Cumulative undersize distribution for 210 nm particle suspension 

 
Figure 5.4 Differential distribution for 210 nm particle suspension 
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more susceptible to interference from dust. The suspension used for the experiment was 

0.0025% solids in DI water. Table 5.6 provides the measurement parameters and Table 

5.7 gives the measurement results. The mean effective diameter measured is 64.5 nm, a 

13.2% difference from the diameter provided on the product data sheet. The mean 

polydispersivity is 0.155 and the mean baseline index and data retention is 9.0 and 

90.30%, respectively. 

Table 5.6 Measurement parameters for 57 nm particle size distribution measurement 
Parameter Value 
Temperature 30.0 
Suspension Water 
Viscosity 0.798 cp 
Ref. Index Fluid 1.330 
Angle 90.00 
Wavelength 658.0 nm 
Dust Cutoff 20.00 
Runs Completed 3 
Run Duration 3 minutes 
Total Elapsed Time 9 minutes 
Average Count Rate 520.4 kcps 
Ref. Index Real 1.590 
Ref. Index Imaginary 0.000 

Table 5.7 Measurement results for 57 nm particle size distribution measurement 
Run Eff. Dia. (nm) Half Width (nm) Polydispersivity Baseline Index 

1 64.5 27.1 0.176 9.2 / 90.19% 
2 64.2 24.7 0.148 9.2 / 91.69% 
3 64.6 24.4 0.142 8.5 / 89.00% 

Mean 64.5 25.4 0.155 9.0 / 90.30% 
Std. Error 0.1 0.9 0.011 0.3 / 0.78 
Combined 64.5 25.5 0.156 9.0 / 90.30% 
 

The 57 nm particle size distribution experiment lognormal size distribution results 

are presented in the following figures. The cumulative undersize distribution and 

differential size distribution are provided in Figure 5.5 and 5.6, respectively. 



www.manaraa.com

60 
 

 
 

 
Figure 5.5 Cumulative undersize distribution for 57 nm particle suspension 

 
Figure 5.6 Differential distribution for 57 nm particle suspension 
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5.2.2 Zeta potential measurements 

 Zeta potential measurements were made to determine the average surface charge 

of the particles. The average surface charge directly controls the electrostatic interaction 

between particle and porous medium surfaces. The measurement parameters were 

consistent for each of the zeta potential measurements performed. Table 5.8 provides the 

measurement parameters of the zeta potential measurement for the 510 nm particles. For 

each ionic strength value used in the experiments, Table 5.9 presents the corresponding 

zeta potential of the particles and relative residual of the data. The relative residual is a 

dimensionless value characterizing the fitted data. 

Table 5.8 Zeta potential measurement parameters for 510 nm particle suspensions 
Parameter Value 
pH 6.90 
Temperature (°C) 25.0 
Liquid Water 
Viscosity (cP) 0.890 
Refractive Index 1.330 
Wavelength (nm) 658.0 

Table 5.9 Zeta potential measurement results for 510 nm particle suspensions 
Ionic Strength (mM NaCl) Zeta Potential (mV) 

0 -45.37 
3 -45.13 
10 -46.10 
20 -45.08 
50 -38.10 
70 -37.68 
100 -32.09 
200 -23.72 
300 -24.49 
400 -24.79 
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The zeta potentials of the particles were negative at the experimental pH (6.95±1) 

for all of the solution chemistries. A graphical representation of the data from Table 5.9 is 

provided in Figure 5.7. As the ionic strength of the monovalent salt solution increases, 

the zeta potentials become less negative until appearing to plateau somewhere in the ionic 

strength range of 100-200 mM NaCl, at approximately -25 mV. The decrease in zeta 

potential resulting from the increased ionic strength is attributed to electric double layer 

compression [29]. Several previous studies [34] have shown the interactions between 

particles and grain surfaces are electrostatic in origin. The zeta potential data can be used 

to analyze the interaction energies between particles and glass bead surfaces, and thus 

provide a better understanding of the transport and retention of particles in porous media. 

 
Figure 5.7 Zeta potential measurement results for 510 nm particle suspensions 
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graphical representation of the mobility data measured during the 510 nm particle zeta 

potential measurements. Conductance was also measured during the zeta potential 

measurements and the graphical results of the conductance measurements are shown in 

Figure 5.9. 

 
Figure 5.8 Mobility measurement results for 510 nm particle suspensions 
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Figure 5.9 Conductance measurement results for 510 nm particle suspensions 
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Table 5.10 Zeta potential measurements for each size particle in DI water suspensions 
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Diameter (nm) 
Zeta Potential (mV) 

DI Water 3 mM NaCl 
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5.2.3 Summary of particle characterization results 

 The following conclusions may be drawn based on the results of the particle size 

distributions and zeta potential measurements: 

1. Particle size distributions measured for each of the three particle sizes 

are generally in agreement with the diameters provided on the 

manufacture’s product data sheet. 

2. Results of the zeta potential measurements for each of the three 

particles sizes are very close in value at the experimental solution 

chemistry. This consistency between the different particle sizes used in 

this study allows the influence of zeta potential to be ignored, 

simplifying the scenario and allowing for the investigation of the 

influence of particle size on retention. 

3. The selected range of particle sizes, generally from 50 nm to 500 nm, 

reflects the typical range of engineered nanomaterial aggregate sizes 

[35]. Zeta potential measurements for particles suspendered in DI 

water and varied ionic strengths are in the same range of reported zeta 

potential values as engineered nanomaterials [36]. Thus, the behavior 

of the selected particles is assumed representative of the behavior of 

common engineered nanomaterials.  
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5.3 Conversion of Laser Scanning Cytometer Data 

5.3.1 Laser Scanning Cytometer typical data 

 The output file from an LSC scan provides several different types of data. Table 

5.11 shows data for the first 25 events recorded during a sample LSC scan. 

Table 5.11 Typical data from Laser Scanning Cytometer scan output file 
# x y Area (μm2) Integral Max Pixel 
1 31905 10877 99 590146 3226 
2 31986 10873 14 48593 1342 
3 31781 10983 140 845170 4585 
4 31810 10947 90 383388 2440 
5 31880 10932 301 1395040 3037 
6 31885 10909 40 149229 1757 
7 31892 10905 62 269608 2172 
8 31915 10954 905 4375779 4294 
9 31919 10916 565 2859840 3648 
10 31921 10889 39 149843 1591 
11 31942 10947 67 350327 2720 
12 31947 10991 230 899032 2425 
13 31948 10939 11 26053 798 
14 31960 10891 23 105106 2029 
15 31960 10960 570 2301100 2128 
16 31964 10909 888 4357598 3413 
17 31965 10999 24 73347 1249 
18 31967 10978 16 38126 841 
19 31978 10943 149 641945 2283 
20 31984 10924 22 85452 1821 
21 32069 10879 198 717917 2443 
22 32072 10869 26 83236 1728 
23 32006 10960 30 93118 1285 
24 32027 10955 51 149384 1382 
25 32051 10922 403 1680850 3327 

 

The first column, labeled with a number sign, gives the reference number of the 

recorded event. The event labeled with the number one (1) is the first event recorded 

during the LSC scan. This should not be confused as representing a single particle, but 
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rather an event within a threshold contour defined by the user. If several particles are 

close enough in proximity, a single contour may enclose all of the particles resulting in 

multiple particles represented as a single event. 

The second and third columns in Table 5.11 provide the position data for the 

recorded event. The second column represents the x-position of the contouring channel 

based on the centroid of the event. The third column gives the recorded event’s y-position 

of its centroid. The values are given in the software’s predefined coordinate system which 

is relative to the stage’s home position. These coordinates are later converted to a new 

coordinate system in which the rightmost side of the flow channel inlet is the origin, flow 

is in the x-direction and the units are millimeters. The formulas for converting the 

coordinates are as follows: 

xnew = (62,750 – xLSC)/1000 

ynew = (15,250 – yLSC)/1000 

The fourth column in Table 5.11 provides the area in square microns as 

determined by the threshold contour. The fifth column lists the integral for the recorded 

event. The integral value is the total amount of fluorescence. As depicted in Figure 5.10, 

the values for area and integral of a recorded event show a statistically linear correlation 

relationship. 
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some particles being more focused within the scan area than others. Thus, area data is 

used to quantify the number of attached particles. 

 The first step in using area data to quantify the number of particles attached for a 

specific experiment is to create a histogram of the area data. For each of the three 

particles sizes, the peak value of the area histogram is consistent. For the 510 nm 

particles, the peak occurs at an area value of 18 as shown in Figure 5.11. Figure 5.12 and 

Figure 5.13 show the peak occurs at an area value of 12 for both the 210 nm and 57 nm 

particles, respectively. Because of the magnitude of the zeta potentials measured for the 

particle suspensions at each of the ionic strengths, as well as the particle size distribution 

measurement results, it is expected that little or no aggregation occurred. That being said, 

it is believed that the consistent peaks on the area histograms occurred because the event 

captured a single particle, which is the most common occurrence expected within the 

flow cell. In some cases, much larger areas were captured by a single event. This is likely 

a result of particles attaching in close enough proximity that they were captured within 

the same threshold contour. 



www.manaraa.com

70 
 

 
 

 
Figure 5.11 Area histogram for sample 510 nm particle flow cell experiment 

 
Figure 5.12 Area histogram for sample 210 nm particle flow cell experiment 
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Figure 5.13 Area histogram for sample 57 nm particle flow cell experiment 
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each flow cell experiment for the 210 nm particles and 4.3% of the data for 57 nm 

particle flow cell experiments. 

 

5.3.3 Spatial distributions of attached particles 

 One method of data analysis is to develop spatial distributions of the attached 

particles. The previous section covered the method developed for converting the area 

value measured for each recorded event to the number of attached particles each event 

represents. It also described a method for eliminating data determined to not represent 

particle attachment. The LSC data for each event has a corresponding x- and y-position 

which is converted to a coordinate system as defined earlier. Using the data for the 

number of attached particles as well as the position data, MATLAB is used to create a 

figure showing the spatial distribution of attached particles within the scan area for each 

flow cell experiment. The y-axis represents the y-position of the recorded event in 

millimeters and the x-axis represents the x-position of the event in millimeters. Each 

event is represented by a single dot on the spatial distribution, all of which are the same 

size; however, the number of attached particles a specific dot represents is defined by the 

color bar. The color bar defines which colors correspond to each number of attached 

particles. Figure 5.14 provides a spatial distribution of attached particles for a sample 

flow cell experiment. For this figure, the color bar maximum is 4 attached particles to 

better show the effectiveness of the color bar for distinguishing more concentrated areas 

of attached particles. The elliptical appearance of the spherical glass beads is due to the 

stretching of the y-axis compared to the x-axis. 
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Figure 5.16 Influence of particle size on attachment (0.08 cm/s, 3 mM NaCl, 40 PV) 
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colloidal science research, more effort was devoted to comparing the behaviors of the 

three different size particles under varied injection duration, solution chemistry, solids 

content and Darcy velocity. 

At this point, it is appropriate to acknowledge a possible technical issue related to 

LSC scanning. In Figure 5.17, there appears to be regions of reduced attachment 

occurring along the flow channel walls for the experiments using 510 nm and 210 nm 

particles; however, less attachment is unexpected in these areas compared to that of the 

center of the flow channel. What appears to be minimal attachment occurring could 

actually be a result of the LSC threshold contour failing to distinguish an event due to the 

area being oversaturated with fluorescence. This oversaturation results in the intensity 

never dipping low enough for a threshold contour to occur and account for the particles 

attached in these regions. Because it represents a relatively small portion of the scan area, 

it is believed that the results and trends are still statistically valid.  
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of 40 PV, 120 PV, 240 PV and 300 PV injection durations. Regardless of the duration 

that the particle suspension was injected, the rinse performed was always 5 PV for these 

experiments. Figure 5.18 provides a graphical representation of the results from the flow 

cell experiments investigating the influence of injection duration on attachment using 510 

nm particles. 

 
Figure 5.18 Influence of injection duration on attachment using 510 nm particles 
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increase from 40 PV to 120 PV at 0.08 cm/s indicates a likely Smax. In examining the 

0

197,063
218,887

0

135,001

242,928

207,837

0

50,000

100,000

150,000

200,000

250,000

300,000

0 50 100 150 200 250 300

N
u

m
b

er
 o

f A
tt

ac
h

ed
 P

ar
ti

cl
es

Injection Duration (PV)

0.08 cm/s 0.04 cm/s



www.manaraa.com

 

 
 

gr

co

o

ar

o

du

4

1

 

raphical resu

onditions is 

The sp

f injection d

re presented

ccurs within

urations. 

40 PV 

20 PV 

Figure 5
investigatin

ults, it appea

between 200

patial distrib

duration on a

in Figure 5.

n the center r

5.19 Spatial 
ng the influen

ars Smax for t

0,000 and 25

butions of the

attachment fo

.19 and Figu

regions of th

#

(a) 

                     

distribution
nce of inject

 

he 510 nm p

50,000 partic

e flow cell e

or the 510 nm

ure 5.20, resp

he flow chann

# of Attached Particles

                                      

s of attached
tion duration
Darcy veloc

particles und

cles within th

experiments 

m particles a

pectively. It 

nel with the 

 

                          # of Att

d particles fo
n using 510 n
city 

der these exp

the scan area

investigating

at 0.08 cm/s 

appears mor

increased in

(b) 

tached Particles 

 

for flow cell e
nm particles

perimental 

a. 

g the influen

and 0.04 cm

re attachmen

njection 

# of Attached

experiments
s and 0.08 cm

79 

nce 

m/s 

nt 

d Particles 

 

 
m/s 



www.manaraa.com

 

 
 

in

pr

sh

in

6

40 PV 

120 PV 

240 PV 

Figure 5
investigati

The in

nvestigated a

resented in F

hown in Figu

As the

ncreasing att

5% addition

5.20 Spatial 
ing the influe

nfluence of i

at 0.08 cm/s 

Figure 5.21 a

ure 5.22. 

e injection d

tachment dec

nal attachmen

#

(a) 

                      

                      

distribution
ence of injec

vel

injection dur

Darcy veloc

and the spati

duration incre

creases with

nt occurs as 

# of Attached Particles

                                      

                                      

s of attached
ction duratio
locity of 0.04

ration on atta

city. The gra

ial distributi

eases, more 

h increasing i

injection du

                         # of Att

                         # of Att

d particles fo
on using 510
4 cm/s 

achment for 

aphical repre

ions for the f

attachment o

injection dur

uration is inc

(b) 

tached Particles 

 

tached Particles 

 

for flow cell e
0 nm particle

57 nm parti

esentation of

flow cell exp

occurs; how

ration. Overa

creased from

# of Attached Pa

experiments
es and a Dar

cles was 

f the results i

periments ar

wever, the rat

all, less than

m 40 PV to 30

80 

articles 

 
rcy 

is 

e 

te of 

n 

00 



www.manaraa.com

81 
 

 
 

PV. For this experiment, attachment increases 40% as injection duration increases from 

40 PV to 120 PV. Attachment only increases less than 20% as injection duration 

increases from 120PV to 300 PV. Significant increases in injection duration only lead to 

moderate increases in attachment indicating that the attachment of 57 nm particles fails to 

follow classic filtration theory. The fact that the rate of attachment slows down as 

injection duration increases may indicate the particles previously attached to glass bead 

surfaces may block available sites for subsequent attachment. While the blocking effect is 

obvious, experiments with longer injection durations may be necessary to identify if Smax 

behavior is shown by 57 nm particles. 

 
Figure 5.21 Influence of injection duration on attachment using 57 nm particles and a 

Darcy velocity of 0.08 cm/s 
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used for these experiments was 0.0025% and the Darcy velocity was 0.04 cm/s. The ionic 

strength of the particle suspension and background solution was 100 mM NaCl. The 

graphical results for the 510 nm and 57 nm experiments are presented in Figure 5.23 and 

Figure 5.24, respectively. The spatial distributions for the flow cell experiments 

investigating the influence of solution chemistry for the 510 nm and 57 nm particles are 

presented in Figure 5.25 and Figure 5.26, respectively. 

 
Figure 5.23 Influence of solution chemistry on attachment using 510 nm particles 
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strength in the solution changes to a sufficiently low level, the secondary minimum 

attractive energy well will disappear. For these experiments to be in agreement with this, 

the particles attached as a result of the secondary minimum well should release during the 

DI water rinse. In comparing the spatial distributions of attached particles before and 

after the DI water rinse, the percentage of particles attached as a result of the secondary 

minimum should be quantifiable. 

For the 510 nm particles, the DI water rinse results in 9.3% of the attached 

particles removed. The DI water rinse for the 57 nm particles results in 14% of the 

attached particles removed. These results indicate the secondary minimum may 

contribution to approximately 10% of the particle attachment. Further, the similar 

percentage of particles released for both 510nm and 57 nm particles indicates the 

contribution of the secondary minimum is independent of particle size. These 

experiments found most (85-90%) particles are attached to glass bead surface due to 

primary energy minimum. This is consistent with column-scale nC60 fullerene transport 

studies [21]. In that study, surface charge heterogeneity of porous medium surface was 

considered the reason for primary energy minimum attachment. 

 

5.4.4 Influence of Darcy velocity 

 The influence of Darcy velocity on attachment was also investigated at several 

velocities for each of the particle sizes. The solids content for each of these experiments 

was 0.0025%, the ionic strength was 3 mM NaCl, the pH was 6.95±1 and the injection 

duration was 40 PV with the standard 5 PV background solution rinse. Darcy velocities 

of 0.08 cm/s, 0.06 cm/s, 0.04 cm/s and 0.02 cm/s were used and duplicate experiments 
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were performed with the results subsequently averaged. Figure 5.27 provides the 

graphical results of the Darcy velocity flow cell experiments for all three particle sizes. 

The spatial distributions of attached particles for the 510 nm, 210 nm and 57nm particle 

experiments are presented in Figure 5.28, Figure 5.29 and Figure 5.30, respectively. 

 
Figure 5.27 Influence of Darcy velocity on attachment 
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Several unexpected trends are seen in these results. According to Figure 5.27, 

both of the larger particles (510 nm and 210 nm) exhibit an increase in attachment as the 

Darcy velocity increases; however, the trend is not clear for the 57 nm particles. 

Attachment of the 57 nm particles varies only slightly as the Darcy velocity changes and 

provides no clear indication of increasing or decreasing attachment. These results are 

inconsistent with a previously published column-scale study [21] in which attachment 

was found to reduce with increasing Darcy velocity for nC60 nanoparticles. 

A possible explanation for the unexpected increase in attachment within the scan 

area as the Darcy velocity increases for the 510 nm and 210 nm particles is the inability 

to define a scan area containing the inlet of the flow channel due to spatial limitations 

between the flow cell and fittings and the microscope objective. The results of each LSC 

scan only reflect a relative number of attached particles within the scan area as opposed 

to the total number of attached particles in the flow channel. More specifically, it is 

possible significantly higher attachment is occurring upstream of the scan area near the 

flow channel inlet resulting in the apparent decrease in attachment in the middle 12.5 mm 

of the flow channel. This hypothesis can be explained by the observed Smax in Section 

5.4.2. 

As illustrated in Figure 5.27, at the low Darcy velocity (0.04 cm/s), the number of 

attached 510 nm particles after a 40 PV injection is roughly 135,001. This is about 50-

60% of the estimated Smax for the scan area (200,000 to 250,000). If Smax is unachieved, 

plenty of available attachment sites are present on the glass bead surfaces near the flow 

cell inlet. The result is particles attaching preferentially to glass bead surfaces closer to 

the flow channel inlet, allowing for fewer particles to travel to the scan area in the middle 
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12.5 mm of the flow cell. The LSC scan is unable to measure the number of particles 

attaching near the flow channel inlet. This explanation is further supported by 

experiments with longer injection durations. After a 120 PV injection, the number of 

attached 510 nm particles increases approximately 80% compared to the number of 

attached particles after a 40 PV injection experiment with 0.04 cm/s Darcy velocity. On 

the other hand, the number of attached particles increases roughly 10% for the 510 nm 

particles when the injection duration increases from 40PV to 120PV with a Darcy 

velocity of 0.08 cm/s as can be seen in Figure 5.31. In conclusion, the spatial limitation 

restricting the definition of the scan area results in no sufficient data to show if increasing 

Darcy velocity leads to increasing or decreasing attachment of 510 nm and 210 nm 

particles for varying injection durations. It is reasonable, however, to speculate that 

velocity should not have profound influence on the number of attached particles if 

sufficiently large injection durations are used based on the fact that observed Smax from 

Figure 5.31 is very similar for 0.04 cm/s and 0.08 cm/s Darcy velocities. 
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Figure 5.31 Influence of injection duration on attachment for 510 nm particles 
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5.4.5 Influence of solids content 

 Flow cell experiments investigating the influence of solids content on attachment 

were also performed. The ionic strength for each of these experiments was 3 mM NaCl, 

the Darcy velocity was 0.04 cm/s, the pH was 6.95±1 and the injection duration was 40 

PV with the standard 5 PV background solution rinse. Solids contents of 0.005%, 

0.0025% and 0.0005% were used and duplicate experiments were performed and 

averaged. Figure 5.32 presents the results of the influence of solids content flow cell 

experiments graphically for each of the three particle sizes. 

 
Figure 5.32 Influence of solids content on attachment 
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observations were reported for colloidal particle transport at the column-scale [39]. In 

that study, increasing the input concentration for 3.2 μm and 1.0 μm colloids produced 

less attachment and higher mass recovery in the effluent. 

A possible explanation should consider particle (aqueous) - particle (attached) 

repulsive interactions. While some particles are already attached onto glass bead surfaces, 

particles introduced later in the injection may interact with them. This interaction may 

lead to some attached particles escaping from their attachment sites due to repulsive 

energy. The frequency of such interactions should be proportional to the particle 

concentration in solution (i.e. solids content) and the number of attached particles on the 

glass bead surfaces. If the solids content is not sufficiently high, the number of such 

interactions is not predominant. This explains the initial increase in the number of 

attached particles as solids content increases from 0.0005% to 0.0025%; however, it is 

important to note the number of attached particles is not proportional to the solids content 

of the injected particle suspension. When the solids content is higher, such interactions 

are more dominant and lead to a decreasing number of attached particles, as is shown 

when solids content is increased from 0.0025% to 0.005%. 

The spatial distributions of attached particles for the experiments using 510 nm 

and 210 nm particles at various solids contents are presented in Figure 5.33 and Figure 

5.34, respectively. 
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content results in a corresponding increase in the number of particles attached, in 

agreement with expectation. Such an observation is in contrast with the results of the 510 

nm and 210 nm particle experiments where an obvious drop in attachment is observed 

when solids content is as high as 0.005%. This could be due to relatively less significant 

effects particle (aqueous) - particle (attached) interactions due to the much smaller 

particle size. The smaller particle size leads to much weaker repulsive interaction energy 

making it more difficult to mobilize the attached particles. Doubling the solids content 

from 0.0025% to 0.005% only results in a roughly 50% increase in particle attachment, 

however, indicating that particle (aqueous) - particle (attached) interactions may still be 

occurring to a less dominant extent compared to that of the larger particles. 

 
Figure 5.35 Influence of solids content on attachment using 57 nm particles 

  

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 0.001 0.002 0.003 0.004 0.005 0.006

N
u

m
er

 o
f A

tt
ac

h
ed

 P
ar

ti
cl

es

Solid Content (%)



www.manaraa.com

 

 
 

 

0.005% 

0.0025% 

0.0005% 

Figure 5
in
5.36 Spatial 
nvestigating 

(a) 

(a) 

(a) 

distribution
the influenc

 

# of Attached Particles

# of Attached Particles

# of Attached Particles

s of attached
ce of solids c

s 

s 

s 

d particles fo
content using

(b) 

(b) 

(b) 

for flow cell e
g 57 nm part

# of Attached P

# of Attached P

# of Attached P

experiments
ticles 

99 

Particles 

Particles 

Particles 

 



www.manaraa.com

100 
 

 
 

Chapter 6 

Conclusions 

 

6.1 Overview 

The primary focus of this study was to develop a method for using Laser 

Scanning Cytometry to investigate the transport of nano-scale particles in porous media. 

The purpose was to develop a repeatable approach in which the stable attachment of 

particles in a glass bead packed flow cell could be visualized, recorded and quantified in 

order to provide qualitative data and spatial distributions of attachment. From these 

results, the expectation was that direct insight into the fundamental mechanism governing 

the transport of nano-scale particles in porous media would be provided. 

The first phase involved determining the feasibility of using fluorescent particles 

as small as 57 nm in conjunction with an LSC. After compatibly was verified, a method 

was developed to prepare and characterize particle suspensions, a flow system was 

designed and an experimental protocol was developed for flow cell experiments using an 

LSC. The second phase required an approach for taking the LSC data and converting it to 

quantifiable results, including spatial distributions of attached particles. From these 

results, direct observations were made regarding the influence of particle size, injection 

duration, solution chemistry, Darcy velocity and solids content on attachment. Further, 

observations and hypotheses were made concerning the mechanisms influencing the 

transport of the particles. 
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6.2 General Conclusions 

1. An experimental protocol for using Laser Scanning Cytometry to investigate 

the transport of nano-scale particles in glass bead porous media was 

developed. This technique allows for both visualization and quantification of 

attachment. From the results, observations about the influence of particle size, 

injection duration, solution chemistry, Darcy velocity and solids content on 

attachment can be made. More importantly, direct insight into the fundamental 

mechanisms governing transport is provided. 

2. The results of zeta potential measurements confirm that each of the three size 

particles are very close in zeta potential at each of the solution chemistries 

investigated; therefore, investigation into the influence of particle size on 

attachment is possible. More importantly, the range of particle sizes and 

corresponding zeta potentials are in the same range of reported sizes and zeta 

potentials as common engineered nanoparticle aggregates [35, 36]. This 

allows for the assumption that the behavior of the particles used in this study 

is representative of the behavior of common engineered nanomaterials. 

3. The number of attached particles was found to decrease with decreasing 

particle size. Such an observation is in contradiction with classic filtration 

theory, but consistent with the column-scale study by Pelley and Tufenkji 

[28]. More effort was devoted to compare the behaviors of the three different 

size particles under varied injection duration, solution chemistry, solids 

content and Darcy velocity. 
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4. The increase in injection duration for the 510 nm particles indicates a likely 

Smax. Blocking effects were observed for the 57 nm particles in which attached 

particles block the available attachment sites and slow down the attachment of 

subsequent incoming particles. The spatial distributions of attached particles 

for these experiments also indicate more attachment occurs in the center 

regions of the flow channel with increasing injection duration. 

5. Secondary minimum attachment plays a minor role for the attachment of both 

the 510 nm and 57 nm particles. Only about 10% of the attachment can be 

attributed to secondary minimum attachment, consistent with column-scale 

studies [21]. Further, the contribution of the secondary minimum is 

independent of particle size over the range of particle sizes investigated.  

6. Change of Darcy velocity does not have profound influence on the attachment 

of the 57 nm particles. The seemingly flat trend for the influence of Darcy 

velocity for the 57 nm particles indicates that their transport is dominated by 

diffusion. Diffusion control can be further confirmed by the spatial 

distributions of attachment particles which show many 57 nm particles 

attached on downstream areas of the glass beads. Experiments on the 

influences of Darcy velocity on the attachment of 510 nm and 210 nm 

particles, however, did not provide definitive conclusions because the LSC 

scans did not cover the areas adjacent to the flow cell inlet. This is area is 

believed to be particularly critical to 510 nm and 210 nm particles with higher 

attachment capacity. 
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7. Investigations of initial solids content revealed the importance of particle 

(aqueous) - particle (attached) interactions. For 510 nm and 210 nm particles, 

there exists a critical initial solids content above which the number of attached 

particles will decrease with increasing initial solids content, consistent with 

previous column-scale studies [39]. This trend does not occur for the 57 nm 

particles. They exhibit increasing attachment with increasing solids content 

due to much weaker repulsive interaction energy for smaller size particles. 

 

6.3 Future Recommendations 

1. In several of the spatial distributions of attached particles there appears to be 

regions of reduced attachment occurring along the flow channel walls; 

however, less attachment is unexpected in these areas compared to that of the 

center of the flow channel. What appears to be minimal attachment occurring 

could actually be a result of the LSC threshold contour failing to distinguish 

an event due to the area being oversaturated with fluorescence. This 

oversaturation results in the intensity never dipping low enough for a 

threshold contour to occur and to account for the particles attached in these 

regions. Initially, it was believed that keeping the LSC parameters consistent 

for each experiment was important so as to not influence the results. After 

much consideration, it is now believed that the LSC parameters should be 

optimized for each individual experiment. Over time, the behavior of the 

fluorescent particles is inconsistent and the fluorescence can certainly change 

as it ages. Further, the fluorescence is designed, and excitation and emission 
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spectra developed for it, before it is applied to a particle suspension. It was 

discovered that the excitation and emission spectra are not exactly 

representative of how the fluorescently dyed particles will scan, because the 

behavior of the fluorescence can be slightly altered once it is introduced to the 

particle suspension. It is not reasonable to believe that each batch of particle 

suspension purchased will exhibit the same response to the LSC parameters. 

2. The most important parameter the LSC operator needs to consider is the 

threshold contour. The value for the threshold contour determines how events 

will be recorded. Depending on the background noise and intensity value of 

areas where no attachment occurs, the threshold contour should be very 

carefully defined in order to maximize the number of particles accounted for 

during each LSC scan. 

3. This study did not definitively define where the microscope was focused; 

rather, the microscope was focused at the top of the single layer of glass 

beads. The glass bead diameters vary over a small range, so it is not possible 

to get every single one of the beads into perfect focus. Future studies should 

consider developing a method to measure exactly where the microscope is 

focused within the flow channel in regards to the vertical dimension. This may 

allow several scans to be performed and combined from which a third spatial 

dimension can be introduced to the analysis. 
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